Geome	try Lomac 2015-2016	Date <u>10/14</u>	due <u>10/15</u>	Function Graphs 3.1L
Name LO:	l can identify inputs, outputs graph.	s, maximum valu	Per les, and mini	mum values on a function
	NOW On the back of this p	acket		
<u> </u>	Need to Know: Function Inp Graphs are one of the most p given inputs. You can also some of those skills in Exerce Inputs are x-values Outputs are y-values y = f(x) because y-values are a function (series of o maximum is the highest y-values minimum is the lowest y-values	outs, Outputs, Ma powerful ways of easily see featur cise #1. the results after p perations) on x-va- lue of a function ue of a function	aximum, and visualizing a res such as m performing alues	Minimum values function's rule because you can quickly read outputs maximum and minimum output values. Let's review y f(x) f(x) f(x) x

(2) transparen cies, dry erase markers,

erasers

Function Graphs

Exercise #1: Given the function y = f(x) defined by the graph below, answer the following questions.

(a) Find the value of each of the following:

$$f(4) = f(-1) =$$

- (b) For what values of x does f(x) = -2? Illustrate on the graph.
- (c) State the **minimum** and **maximum values of** the **function**.

1

(d) How would the **minimum** and/or the **maximum** be different if there were arrows on the graph?

(3) Functions: finding outputs and graphing

So, if we can read a graph to produce outputs (*y*-values) if we are given inputs (*x*-values), then we should be able to reverse the process and produce a graph of the function from its **algebraically expressed rule**.

Exercise #2: Consider the function given by the rule g(x) = 2x + 3.

(a) Fill out the table below for the inputs given.

x	2x + 3	(x, y)
-3		
-2		
-1		
0		
1		
2		
3		

(4) Functions: finding outputs and graphing

Never forget that all we need to do to **translate** between an equation and a graph is to **plot** input/output pairs according to whatever rule we are given. Let's look at a simple **non-linear** function next.

Exercise #3: Consider the simplest quadratic function $f(x) = x^2$. Fill out the function table below for the inputs given and graph the function on the axes provided.

x	x^2	(x, y)
-3		
-2		
-1		
0		
1		
2		
3		

2

(5) Function Graphs: Piecewise

cont.

Sometimes the function's rule gets all sorts of funny and can include being **piecewise defined**. These functions have different rules for different values of x. These separate rules combine to make a larger (and more complicated rule). Let's try to get a feel for one of these.

Exercise #4: Consider the function given by the formula $f(x) = \begin{cases} 2x+6 & x<0\\ 6-x & x \ge 0 \end{cases}$. Your teacher will help you

understand the notation of this function.

(a) Evaluate each of the following:

$$f(4) = \qquad \qquad f(-3) =$$

(b) Fill out the table below for the inputs given. Keep in mind which formula you are using.

x	Rule/Calculation	(x, y)
-3		
-2		
-1		
0		
1		
2		
3		

(c) Graph y = f(x) on the axes below.

(5) Exit Ticket

ON THE LAST PAGE

(6) Homework

1. The following graph represents the cost of a phone plan after a certain number of text messages used in a month. Analyze the graph to answer the following questions.

(c) What might have caused the graph to begin increasing at 800 text messages?

2. Consider the function f(x) = 3(2-x)-2. Fill out the function table below for the inputs given and graph the function on the axes provided.

x	3(2-x)-2	(x, y)
-2		
-1		
0		
1		
2		

- 3. Consider the following relationship given by the formula $f(x) = \begin{cases} 3-2x & x \le 1 \\ 2x-1 & x > 1 \end{cases}$ (a) Evaluate each of the following:
 - $f(5) = \qquad \qquad f(-2) =$
 - (b) Carefully evaluate f(1).
 - (c)Fill out the table below for the inputs given. Keep in mind which formula you are using.

x	Rule/Calculation	(x, y)
-1		
0		
1		
2		
3		

(d) Graph y = f(x) on the axes below.

(e) What is the minimum value of the function? Circle the point that indicates this value on the graph.

cont.

Exit Ticket	Name	Date	_ Per	3.1L
				-

(1) The LO (Learning Outcomes) are written below your name on the front of this packet. Demonstrate your achievement of these outcomes by doing the following:

Using the graph of the function f(x) shown below, answer the following questions.

(a) Find the value of each of the following:

$$f\left(-7\right) = \qquad \qquad f\left(0\right) =$$

 $f(4) = \qquad \qquad f(9) =$

(b) For how many values of x does f(x) = 5? Illustrate on the graph.

(d) State the maximum and minimum values the graph obtains.

5

6				
DO NOW	Name	Date	Per	3.1L

(1) Solving progress: Solve one of the two problems below.

(a) 5n + 34 = -2(1 - 7n) (b) -20 = -4x - 6x

(2) Translation to algebra progress. Write an algebraic statement to represent this situation. Be sure to write a "Let" statement to define any variables.

When you multiply a number *s* by 9 and add 5, the result is the same as the product of the number *s* and 7.